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SUMMARY

An index of carcinogenic potency for chemicals tested in chronic animal experiments is described.
By analogy with the well-known ‘lethal dose 50’ (LD50) of quantal bioassay, a ‘tumorigenic dose 50
(TD50) may be defined (in the absence both of tumors in the control group and of intercurrent
deaths) as that (daily) dose of chemical which gives 50% of the test animals tumors by some fixed
age. Tumors in the control (zero-dose) group are handled exactly as for the LD50, and intercurrent
deaths are handled by life-table methods. Nonparametric procedures are developed for estimating the
TD50 and for constructing confidence intervals. These are based on likelihoods which assume that
the tumor hazard is linear in dose.

1. Introduction

For reasons discussed in detail elsewhere (Gold et al., 1984; Peto et al., 1984), a particularly
appropriate index of the apparent potency of chemicals in long-term animal carcinogenesis
experiments is the “TD50’. This is defined as the daily dose rate required to halve the
probability of remaining tumorless at the end of a standard lifespan. A choice of standard
lifespans for each species accompanied the original definition, and is necessary because a
20% increase in lifespan can easily double the cumulative incidence of tumors. Note that
this definition automatically makes due allowance for the effects of intercurrent mortality,
unrelated to treatment, on tumor yields. It contains, however, no explicit statement of
precisely how the TD50 is to be estimated from real data. The present paper concerns
estimation of the TD50 from such experiments by an extension of the methods of Cox
(1972) in one important special case. This is the case of an animal experiment that is
terminated at the end of the standard experimental lifespan, and in which the hazard
function can be assumed to be approximately linearly related to the dose rate, and all
tumors of the relevant type(s) found in animals dying before then can be analyzed as if
they had caused the death of the host. Strictly speaking, one should ignore all tumors found
incidentally at the postmortem of an animal that died prematurely of unrelated causes, and
count all tumors, without exception, found at the terminal sacrifice (Peto et al., 1980).
There have been previous attempts to quantify potency (Twort and Twort, 1930, 1933;

Key wora’;: Life-table methods; Carcinogenic potency; Linear hazard rate; Animal carcinogenesis
experiments; TD50.

27



28 Biometrics, March 1984

Iball, 1939; Bryan and Shimkin, 1943; Irwin and Goodman, 1946; Druckrey, 1967,
Meselson and Russell, 1977). Our proposed index of carcinogenic potency (TD50) differs
in that it takes into account both the incidence of spontaneous tumors and intercurrent
mortality.

In this paper we first briefly develop the rationale for TD50. We then present a general
linear dose-response model for time-to-tumor data, discuss the estimation of the TD50 for
this model following the general approach of Cox (1972), and suggest a method for
calculating confidence limits for the TDS50.

2. TDS0

The notion of the lethal dose 50 (LD50) is well-defined in standard quantal bioassay as
that dose that kills 50% of the test animals (Loomis, 1978). This definition assumes that
no animals die in the zero-dose (control) group. However, if animals need to be observed
for an extended period of time, deaths may occur in the control group and the definition
of the LD50 must be changed accordingly. This situation was discussed in detail by Finney
(1949, 1964) who, in effect, suggested defining the LD50 as that dose that will halve the
proportion of animals remaining alive at the end of the test period. Let P, (= 1 — Q) be
the proportion of control animals dying and let P, (= | — Q,) be the proportion of animals
dying at a dose of size d; then the LDS50 is that dose, D, such that

Op = 30s. 0]

This definition assumes that a proportion P, of animals respond whatever dose is given,
and that the remaining proportion, Qy, respond according to a tolerance distribution which
has a structure that is independent of the size of Qp. The LD50 is that dose that will kill
50% of this remaining proportion Q.

By analogy to the LD50, the TD50 may be defined (in the absence both of tumors in the
control group and of intercurrent deaths) as that (daily) dose that gives 50% of the test
animals tumors by some fixed age, T (the ‘standard lifespan’ for the given species). Tumors
in the control group are handled exactly as in (1), and intercurrent deaths are handled by
life-table methods.

3. Mathematical Model

We assume that an animal exposed daily to a specific chemical at dose d has a tumor-
hazard rate (age-specific incidence rate) at age ¢, which may be written

N d) = (a + bd)uo(D), )

where a > 0 and b = 0 are unknown parameters and uo(?) is an unknown function of age
such that au(t) is the tumor-incidence rate at age ¢ at zero dose. Equation (2) states that
an animal that is exposed to dose 4, and is still alive and tumor-free immediately before
age ¢, has a probability, A(f; d)A, of being diagnosed with a tumor in the next small age
interval, A. This model has been shown to adequately describe many carcinogenesis data
sets in man and in animals (Brown, 1976; Crump et al., 1976; Hoel, 1980).

Since uo(¢) is an arbitrary function of age, (2) may be written in a more convenient form
by incorporating a into u(t) so that

MG d) = (1 + Bd)Xo(0). 3)
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Equation (3) implies that

Oo(t) = pr(animal at zero dose has not been diagnosed with a tumor by age ¢ in the
absence of all other causes of death)

=exp{-—- J; Ao(x) dx}. _ (4)

Similarly, at dose d,

Q.(t) = pr(animal at dose d has not been diagnosed with a tumor by age ¢ in the absence
of all other causes of death)

= {Qo(n)}'**4 ®)
For fixed T, the TD50 is thus defined from (4) and (5) as that dose, D, such that
{Qu(T)}'** = 3Qu(T),
that is,
D = log 3/[8 log{Qu(T)}]. (6)

If the ‘cause’ of tumors in the absence of the chemical could somehow be removed, then
it is reasonable to assume that the tumor-incidence rate at dose d would be

£(t; d) = BdXo(2). (7

Under this assumption the TD50 dose, D, would cause 50% of the animals to have tumors
by age T. This is the 50% cumulative single-risk lifetime incidence of Meselson and Russell
(1977), adjusted for intercurrent mortality. Note that the dose, TDp, that will cause a p%
cumulative single-risk lifetime incidence is obtained by multiplying the TD50 by the factor
log(1 — p/100)log 3, that is, TDp = log(1 — p/100)/[8 log{Qo(T)}].
4. Maximum Likelihood Estimation of TD50
We consider an experiment at r dose levels, d; =0, d», . . ., d,, where

N; = number of animals exposed to dose dj
and

n; = number of animals exposed to dose d; that are diagnosed with tumors occurring at
ages X < Xp -+ < X,

Write

and

n = total number of animals diagnosed with tumors in the experiment.

The 71 ages at which animals are diagnosed with tumors are often not recorded precisely,
and more than one such tumor occurrence may be recorded at a given age. We write the
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distinct ages at which data may be recorded as 7o = 0 < 7, < - .. < 7¢. For example, if the
experiment continues for 104 weeks and data are recorded daily, then K = 728.

Equation (3) implies that, for an animal exposed to the dose d; and alive at 7,_;, the
conditional probability that it will be diagnosed with a tumor in the interval (7,_,, 7;) is

PAd) = 1 = expl—(1 + 8d) | nol0) di)
=1- (Ii(dj)
— 1= g0}
g, ®)

where ¢;(d;) is the (conditional) probability of remaining tumor-free in the interval
(ti-1, 7;) and we write g; for ¢;(0). We assume that any animal dying from a nontumor
cause in (7,-1, 7;) would have remained tumor-free until age r; in the absence of the
nontumor death. In this situation A¢(¢) can only be estimated in the form of the g; terms,
and @ and the ¢; terms must be estimated simultaneously.

The maximum likelihood estimate (MLE) of ¢; at any age at which no tumors are
diagnosed is 1, independent of 3. We therefore need only consider the g; terms correspond-
ing to the k distinct ages of tumor diagnosis, ;) < tp) < --- < lx. Denote the associated
k conditional probabilities of remaining tumor-free as g1, 4, - - - » G-

The total likelihood is

k r
gy, - - Qo B) & T TT (1 — gihrPayi( glyrp4)Ni=rp, )]

i=1 j=1

where, for Dose Group j, n; and N;; are, respectively, the number of animals diagnosed
with a tumor at age ¢, and the number of animals at risk at age f;. Note that if ¢, = 7,
then the number of animals at risk at age f is taken to be the number of animals alive
immediately after 7,_,. The associated log likelihood is thus

L=1L(qu,...,qu,0)

=Z'

’
=1 j=

{n; log(1 — giy™%) + (Ny — ny)1 + Bd)) log g} (10)

1

Writing 8 and 4, for the MLEs we find that
Oo(T) = 11 Go, (11)

where the product of i extends from 1 to iz, with ¢, < T and ¢;,+,, > T. We also find
that

D = log /18 log{ Qo(T)}]. (12)

5. Confidence Intervals for TD50

From (6) and general likelihood theory, we may obtain approximate 100(1 — «)%
confidence intervals for the TD50 by finding the maximum and minimum values of
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B log{Qo(T)} = v such that ,
2{L(%) = L(v)} = zap, (13)

where z,, is the upper 100(1 — § @)% point of the standard normal distribution, and
L(y) = max{L(qq), - - -» > B)} (14)

subject to 3 Y log g,y = v and ¥ = B3 log 4., with ¥ denoting summation from 1 to (ir).
To accomplish this we first determine approximate 100(1 — «)% confidence limits

(B, Bu) for B. Writing L(§), - - . , u | B) for the likelihood evaluated at the MLEs of the
g terms for the given 3, the lower limit, 3, (<p), is that value of 8 for which
L(Gay - -5 dw | B) = L(Gays - - -» duy, B) — 322 (15)

holds. The upper limit, 8y (>B), is defined similarly. Values of 8 outside the range
(8L, Bv) are not acceptable and are excluded from consideration in defining the confidence

limits for the TDS50.
For any fixed 8 in the interval (3;, 8y) we must obtain the maximum and minimum

values of v, v.(8) and yu(B), subject to the constraint
L(qay, -5 qw | B) = L(Gay, - - -5 Qs 3) - %Zﬁ/z- (16)

When the method of Lagrange multipliers is used, this implies solving (16) and the iy
equations

= 5[i (1 + BA)IN;; — ny/(1 — q&}ﬁﬁdﬂ)}} =0 (17)

simultaneously for ¢ and the g; terms (i = 1, ..., ir), where 6 > 0 for y,(8) and 6 < 0 for
vyu(B), leaving g, +1), - - ., qu at their ML values for fixed 3.
The desired confidence interval (v, vy) for v is then

YL = mlnt’YL(ﬁ)},
where minimization is over all 8 in (8., Sv), and
vyu = max{yu(B)},

where maximization is again over all 8 in (8., 8v).
The desired confidence limits, D; and D, for the TD50 are

D, = log %/YL (18)
and
Dy = log 3/vu. (19)

Computational methods for estimating these confidence intervals are described in §7.
The adequacy of these confidence intervals for the TD50 is discussed in §9.

6. Rough Probabilities

If the ages of tumor diagnosis are recorded continuously so that n; = ¥; n;; = 1, then in
the manner of Cox (1972), 8 can be estimated independently of the terms ¢;. Conditional
on the set {1} of instants at which tumors occur, the probability that the tumor is in the

animal as observed is

[T+ 8dys /[ 5 Nyl + 6d).
J= J=
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Each tumor contributes a factor of this nature, and hence the required ‘conditional’
likelihood is

k r r
«m=g{gu+ﬁ@% gMﬂ+ﬁ@} 20)

Once the MLE of 3 is obtained, we consider the estimation of the distribution associated
with \o(?), calculating the MLEs of the terms g, conditional on 3.

Time-to-tumor data are usually recorded discretely so that the terms #;, may be greater
than 1. If the data are not recorded continuously, then the ‘exact’ methods of obtaining the
TDS50 and its confidence interval (described in §§4 and 5) can be computationally prohib-
itive when several animals have the same ages of tumor diagnosis. However, the required
‘conditional probability’ for 8 at a given time point is an ‘average’ of the probabilities
associated with each possible ordering of tumor occurrence. Here, each term has a
numerator

-H. (1 + Bd)",
J=
and a denominator

r n(,)—l r

{Z Ny(1 + ij)H I1 { (Nij = wijm)(1 + ij)H,
Jj=1 m=1 Jj=1

where u;;,, (m=1,..., n; — 1) is a possible sequence of tumors. The denominators are

thus slightly less than the rough approximation to them given by

r G
{; Ny(1 + ﬁd,-)} :

In his discussion of the paper by Cox (1972), Peto suggested using this simple ‘rough-
probabilities’ approach. Experience with the Cox model has shown that this approximation
gives very accurate answers. This rough-probabilities approach suggests that B may be
approximated by obtaining the MLE of 3 from the appropriately modified version of (20),
namely,

k r r iy

mm=qhu+ww-5yw+w%} 21)
i=1 Lj= Jj=

Conditional on this MLE of 38, approximate values of each §;, may be found from (9) by

ML methods. The solution to the & ML equations derived from (9), i.e.

,-;1 [Ny(1 + Bd))/aw — niy(1 + Bd)/tga(1l — i} = 0, (22)

requires iteration. An approximate method, requiring no iteration, may be developed in
the manner suggested by Breslow (1974), in which the hazard function A (¢; d) is approxi-
mated by a step function with discontinuities at each observed age of tumor diagnosis (see
Kalbfleisch and Prentice, 1980, §4.2.4). This is equivalent to replacing (9), for fixed 8, with

k

Lnay mey -+ -5 mw 1 8) = 11 Hmi) ,gl (Ny = ny)(1 + 3671)}

i=1

ey

CXD{" 0 El (N = sny)(1 + ij)} / (nu)!)], (23)
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where 7, = —log g. [Equation (23) is a Poisson approximation.] The solution for 7 is
immediate:

M = MG / { é (N = dny)(1 + ij)}- (24)
Jj=1

Equations (21) and (23) may also be used in the obvious way as the basis for developing
confidence intervals as described in §5. The adequacy of these intervals is discussed in §9.

7. Computational Methods

We have found that using a Newton-Raphson approach to obtain the MLEs of 8 and the
qu) terms for either (9) or (21) is not satisfactory, and we have resorted to direct search
techniques. We consider 8 in the form 6 = arctan §3, so as to restrict our search to a finite
range (0, 37). For both the exact and the rough-probabilities methods, 6 (or, equivalently,
B) is located by a golden section (GS) search (Overholt, 1967), and the g terms for the
exact method are obtained at each @ in the search by the same GS method.

To compute the confidence intervals described in §5, 8, and 8y are obtained by a GS
search in a straightforward manner. For a given 8 in (3,, Bv), we solve (16) and (17)
simultaneously to obtain v,(3) and vy(8), by realizing that, for any given 4§, each of the ir
equations (17) may be solved independently for a g;;. Thus, for a given 3, the problem then
reduces to a one-dimensional search for 5. We then use a GS search on 8 to obtain v; and
Yu-

The GS method assumes that the function being maximized is unimodal. However, the
procedure continuously monitors a set of four points to detect any gross violation of this
assumption. We have not proved that the respective likelihoods behave as assumed, but
the checking of many individual cases, by using fine subdivisions of the intervals in which
we search, has always given the same answer as the GS search.

8. Goodness of Fit
We test the fit of the observed data to the hypothesized model (3) by comparing the

observed number of tumor deaths on Treatment j, #;, to its expected number, ¢;, based
on the model, where
k A
g =Y Nyl = giH"?). (25)
i=1

If the model is an adequate description of the experimental results, then

X =

T

(n — ¢)/e, (26)
J
should have an approximate chi square distribution on r — 2 degrees of freedom (df). The
accuracy of this assumption is discussed in §9.
Under the null hypothesis, that is, 8 = 0, write the expected number of tumors in
Group j as E; (Mantel, 1966; Peto and Pike, 1973). A simple test of the null hypothesis is
then

X =

I ~

(m — E)V/E; @7

Jj=1

which has an approximate chi square distribution on r — 1 df. This test can be strengthened
without recourse to the sophistication of (3) by using the test for trend, due to Mantel
(1963) with respect to dose.

These null-hypothesis expected values, E;, may also be used to suggest deviations from
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an increasing tumor risk with increasing dose. Write
R; = nj/Ej, (28)

and note that R, refers to the zero-dose group. R; is termed the ‘relative tumor rate’ for
Group j. The ratio, Rj/R;, is an excellent estimate of the ratio of the tumor rate in Group
j to the tumor rate in the controls (Pike, in his discussion of the paper by Cox, 1972;
Breslow, 1975; Bernstein, Anderson and Pike, 1981). A plot of R;/R, against dose will show
obvious deviations from a linear trend, as will residual plots of (n; — ¢;)/(¢;)"/>.

9. Simulation Study

A simulation study was performed to investigate the amount of bias in the estimates of the
TD50 calculated by the exact method (§§4 and 5) and by the rough-probabilities method
(§6) as well as the coverage probabilities of the respective confidence intervals and the
behavior of the r — 2 df goodness-of-fit test of the model (26).

For each specific case described below, data were generated for 1000 bioassays in which
groups of 50 animals were tested at three dose levels,

{d\, da, d3} = {0, 1, 2}.

Since most theoretical models of carcinogenesis predict a Weibull distribution (Pike,
1966; Peto, 1977), this distribution was selected as the appropriate model for generating
trial times. For each simulation, tumor times were generated according to the Weibull
survival distribution,

F(x) = exp{— c(1 + Bd)(x — w)*} 29)
with s = 4 and w = 50. We set T at 104 (weeks). The TDS50 based on (29) is given by
TD50 = log 2/{cB(T — w)*} (30)
so that
¢B = log 2/{TDSO(T — w)*}. 31

In addition to fixing the TD50, we also required the probability of tumor in the control
group, by age T, to be prin order to solve for ¢ and 8. From (29),

pr=1—expl= (T - w)}. (32)
Thus, from (32), we obtain
¢ = —log(l = pr)/(T — wy’ (33)
and, using (31) and (33),
B = log 3/{TD50 log(1 — pr)}. (34)

For the simulation study, we investigated a variety of cases in which pr = 107 or p; = .25
and TDS50 =1 or TD50 = 5.

We investigated the effects of intercurrent mortality due to two independent causes of
death, one independent of dose and one related to chemical toxicity. For the cause of death
unaffected by chemical dose, we assumed a competing cause of death with survivor function
given by (29), with s = 4, w = 50, 8 = 0, and c calculated so that the net probability of
death due to this cause was py. For the cause of death affected by chemical dose, we
assumed a competing cause of death with survivor function given by (29), with s = 4,
w = 50, ¢ given by (33) with pr set equal to p,, and 3 calculated to give a fixed LD50 (in
the same manner as described above for the TD50). Details of the specific cases studied are
shown in Table 1.
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Table 1
Specific situations studied by simulation

Case TD50 pr Pu LD50 D
1 10°° 107¢ o 10-¢

1
2 1 25 107 0 1076
3 5 10°¢  107¢ 0 1076
4 5 25 107 00 107
5 1 .25 107 1 25
6 1 25 1076 5 .25
7 5 25 1076 1 25
8 5 .25 107 5 25
9 1 .25 25 5 25

In order to generate random samples of trial times, independent uniform random variates
generated by the pseudorandom number algorithm of Pike and Hill (1966), as refined by
Hill (in Atkinson and Pearce, 1976, p. 451) were transformed according to (29) as required.
For all situations studied, the same stream of random variables was generated. Three trial
times (time to tumor, time to dose-independent intercurrent mortality, time to dose-
dependent intercurrent mortality) were generated for each animal. The minimum trial time
was then rounded up to the nearest week, with trial times exceeding 7" considered as
censored observations at 7. For each of the specific cases studied (see Table 1), estimates
of the TD50 and 95% confidence intervals were calculated, and the results of the goodness-
of-fit test for the model at the « = .05 level of significance were obtained.

Normal probability plots for D, log D and 1/D, based on the simulation results for the
exact method for Case 8, are shown in Figs 1 to 3, respectively. The distribution of 1/D
was found to be approximately normal, as indicated in Fig. 3, suggesting that this
transformation is the natural scale to use in presenting simulation results for the mean
estimates of the TD50. The results of these simulations, presented in Table 2, indicate that
both the exact method and the rough-probabilities method give nearly identical minimally
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Figure 1. Normal probability plot for 1) based on simulation results for Case 8 analyzed by the ‘exact’
method.
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Figure 2. Normal probability plot for log D based on simulation results for Case 8 analyzed by the

‘exact’ method.

biased mean estimates of the TD50. For both methods, coverage probabilities of the
confidence intervals give approximately the right coverage probabilities. The last column
of Table 2 shows that results for the goodness-of-fit test for the model also are all very close
to the nominal level.
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Figure 3. Normal probability plot for 1/D based on simulation results for Case 8 analyzed by the

‘exact’ method.
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Table 2
Harmonic mean values of simulation estimates of TD50, actual coverage probabilities of 95%
confidence intervals, and actual probabilities of rejecting goodness-of-fit test for the model at a = .05

level of significance
Case TD50 o}‘i‘:’f;‘;‘sjis D pr(TD50<D;)  pIDS0>Dy)  prX> x2es.)
1 1 Exact 0.990 .020 .004 .030
RP* 0.990 .020 .030 .034
2 1 Exact 0.988 .019 .028 .037
RP 0.997 021 .023 .045
3 5 Exact 4.939 .003 .024 .045
RP 4.937 .024 .024 045
4 5 Exact 4.896 .018 .025 .048
RP 4951 011 021 .052
5 1 Exact 0.998 .026 .024 .040
RP 1.016 027 .020 .047
6 1 Exact 0.984 .019 .024 .045
RP 0.999 021 .022 .055
7 5 Exact 4.973 .009 .025 .034
RP 5.003 .002 .024 .034
8 5 Exact 4.956 .016 .034 .048
RP 5.014 016 .029 .050
9 1 Exact 0.985 017 .027 047
RP 1.001 .022 .020 .053

* RP: Rough probabilities.

The confidence intervals for the TD50 discussed in §5 require extensive iteration. When
computing costs must be considered, the approximate normality of the distribution of
D~! = 1/TD50 suggests that one might use an asymptotic approach to the calculation of
these intervals. The approximate variance of D~' can be found by first applying the ‘delta
method’ (Rao, 1965) to estimate the variance, ¥, of log(D~") and then noting that

(D) = VD

We have investigated these asymptotic confidence intervals by simulation for the
cases shown in Table 1 and find that their total coverage probabilities are close to the
nominal level. However, the lower and upper coverage probabilities are not equal with
pr(TD50 < Dy) being roughly twice pr(TD50 > Dy).

10. An Example

To illustrate the use of the exact method and the rough-probabilities method for calculating
the TD50 and its confidence intervals, we present the skin-tumor data (Table 3) and the
analysis (Table 4) of the National Cancer Institute bioassay on the tumorigenic effects of
5-nitro-o-anisidine administered to male rats in their diet. Three groups of male rats were
studied: a control group of 99 animals, a low-dose group (118 mg/kg body weight/day) of
49 animals, and a high dose group (235 mg/kg body weight/day) of 50 animals. For this
experiment, we assumed the standard lifespan for the animals to be T = 104 weeks.

The estimates obtained for the TD50 and its confidence intervals are little different. The
good-of-fit tests for the model and plot of the relative tumor-rate ratio against dose indicate
that the assumption of linearity is valid for this experiment.

11. Conclusions

The two methods of calculating the TD50 described here are based on a model that assumes
that the tumor-incidence rate is a linear function of dose. The TD50 differs from earlier
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Table 3
Time-to-skin-tumor data for the National Cancer Institute bioassay on the tumorigenic effects of
S-nitro-o-anisidine in male rats

Dose rate (mg/kg/day)
Time point T‘m(‘;vg;lg‘)m‘” 0.0 118.0 235.0

Hjy Ni iz Np i3 Ni

1 47 0 99 0 47 1 49

2 48 0 99 0 47 | 48
3 60 0 98 1 47 0 46
4 66 0 98 1 43 2 44
5 68 0 98 1 42 1 42
6 69 0 98 1 41 0 40
7 70 0 98 0 39 2 40
8 71 0 98 | 39 6 38
9 72 0 98 0 37 10 32
10 73 0 97 1 37 1 21
11 74 0 97 1 36 1 20
12 75 0 96 0 35 1 19
13 76 0 96 1 35 1 18
14 79 0 91 1 33 0 17
15 81 0 86 1 30 0 16
16 83 0 86 1 28 0 15
17 84 0 86 0 26 1 15
18 87 0 84 0 25 2 14
19 92 0 80 0 25 3 12
20 93 0 79 1 25 0 9
21 94 0 79 1 24 0 9
22 96 0 77 0 23 1 9
23 97 0 76 0 22 3 8
24 98 0 76 9 22 0 5
25 99 1 75 0 12 0 5
26 100 0 74 2 11 2 5
27 101 0 72 1 9 | 3
28 102 0 71 4 7 2 2
29 106 1 68 1 3 0 0

indices of potency in that both intercurrent mortality and the incidence of spontaneous
tumors are taken into account. Simulation results for Weibull data indicate that both the
exact method and the rough-probabilities method provide minimally biased estimates of
1/TD50 and close to the nominal confidence interval coverage. These methods can be
applied to the results of the many chronic animal studies that have adequate time-to-tumor
data available. ‘Incidental tumors’ (Peto et al., 1980), i.e. tumors that are discovered at
autopsy but that have not contributed to the death of the animal, should not strictly be
counted as tumors when using these methods. Our method is applicable to either ‘fatal
tumors’, i.e. tumors that are the direct or indirect cause of death of the animal, or ‘mortality-
independent tumors’, i.e. tumors detected at a standard point in the development of the
tumor in living animals. Peto ef al. (1984) discussed the analysis of actual experiments
where the distinction between fatal and incidental tumors is not made.

Confidence limits for the TD50 can be used to examine the sensitivity of ‘negative’
(i.e. not statistically significant) bioassays, so that the bioassay can be described as excluding
TD50s below a certain limit, rather than simply as ‘negative’. Such calculations may be
used to reconcile seemingly conflicting positive and negative results on the same compound.
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Table 4
Results of analyses of skin-tumor data for the National Cancer
Institute bioassay on the tumorigenic effects of 5-nitro-o-anisidine in
male rats, assuming T = 104 weeks

Method
Rough probabil-
Exact ities
D 28.0 29.7
Test for g = 0* 187.8 : 175.4
Two-sided P-value 0.00 0.00
(D, D)t (14.9, 48.6) (16.2, 50.9)
Fit of model
X?on 1 df for non-
linearity 2.37 2.42
Two-sided P-value 0.12 0.12
Mantel test for trend
X? on 1 df for trend 182.39
One-sided P-value 0.00

* Based on the likelihood ratio test using (10): the tabulated values are of
twice the change in log-likelihood on 1 df.
+99% Confidence intervals for D.
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RESUME

On décrit un index de la puissance cancerigéne de produits chimiques testés dans des expériences sur
animaux suivis dans le temps. Par analogie avec la dose lethale 50 (LD50) bien connue dans les essais
biologiques, on peut définir une ‘dose tumeur 50’ (TD50) (en absence de tumeur dans le groupe
controlé et de mort dans la période d’étude) comme la dose (journaliére) de produit chimique qui
donne 50% de tumeurs pour les animaux testés a un age fixé. Les tumeurs dans le groupe contrdlé
(dose zéro) sont traitées exactement comme pour LD50 et on utilise les méthodes des tables de survie
pour tenir compte des morts. On développe des procédures non paramétriques pour estimer le TD50
et construire des intervalles de confiance. Ces procédures supposent que les probabilités de I’apparition
de la tumeur sont linéaires de la dose.
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